Parallel Multi-Core CPU and GPU for Fast and Robust Medical Image Watermarking

Faculty Computer Science Year: 2018
Type of Publication: ZU Hosted Pages: 717-736
Authors:
Journal: Journal of Mathematical Imaging and Vision IEEE Volume: 60
Keywords : Parallel Multi-Core , , , , Fast , Robust Medical Image    
Abstract:
Securing medical images are a very essential process in medical image authentication. Medical image watermarking is a very popular tool to achieve this goal. In this paper, an extremely fast, highly accurate, and robust algorithm is propo
   
     
 
       

Author Related Publications

  • Khalied Mohamed Hosny, "SEMANTIC REPRESENTATION OF MUSIC DATABASE USING NEW ONTOLOGY-BASED SYSTEM", Journal of Theoretical and Applied Information Technology, 2020 More
  • Khalied Mohamed Hosny, "Building a New Semantic Social Network Using Semantic Web-Based Techniques", ِASPG, 2021 More
  • Khalied Mohamed Hosny, "New Graphical Ultimate Processor for Mapping Relational Database to Resource Description Framework", IEEE, 2022 More
  • Khalied Mohamed Hosny, "Fast computation of accurate Zernike moments", Springer, 2008 More
  • Khalied Mohamed Hosny, "Accurate Computation of QPCET for Color Images in Different Coordinate Systems", SPIE, 2017 More

Department Related Publications

  • Walid Ibrahim Ibrahim Khedr, "Ad-hoc on Demand Authentication Chain Protocol - An Authentication Protocol for Ad-Hoc Networks", Institute for Systems and Technologies of Information, Control and Communication, 2015 More
  • Khalied Mohamed Hosny, "Robust Color Image Hashing Using Quaternion Polar Complex Exponential Transform for Image Authentication", Springer, 2018 More
  • Ehab Roshdy Mohamed, "Efficient compression of volumetric medical images using Legendre moments and differential evolution", Springer, 2020 More
  • Asmaa Mohamed Khalid Mohamed Abbas, "Efficient compression of volumetric medical images using Legendre moments and differential evolution", Springer, 2020 More
  • Khalied Mohamed Hosny, "Efficient compression of volumetric medical images using Legendre moments and differential evolution", Springer, 2020 More
Tweet