Zagazig University Digital Repository
Home
Thesis & Publications
All Contents
Publications
Thesis
Graduation Projects
Research Area
Research Area Reports
Search by Research Area
Universities Thesis
ACADEMIC Links
ACADEMIC RESEARCH
Zagazig University Authors
Africa Research Statistics
Google Scholar
Research Gate
Researcher ID
CrossRef
Machine Learning Methods for Spacecraft Telemetry Mining
Faculty
Engineering
Year:
2019
Type of Publication:
ZU Hosted
Pages:
1816 - 1827
Authors:
Sarah Khalil Mohamed Ibrahim
Staff Zu Site
Abstract In Staff Site
Journal:
IEEE Transactions on Aerospace and Electronic Systems IEEE
Volume:
55
Keywords :
Machine Learning Methods , Spacecraft Telemetry Mining
Abstract:
Spacecrafts are critical systems that have to survive space environment effects. Due to its complexity, these types of systems are designed in a way to mitigate errors and maneuver the critical situations. Spacecraft delivers to the ground operator an abundance data related to system status telemetry; the telemetry parameters are monitored to indicate spacecraft performance. Recently, researchers proposed using Machine Learning (ML)/Telemetry Mining (TM) techniques for telemetry parameters forecasting. Telemetry processing facilitates the data visualization to enable operators understanding the behavior of the satellite in order to reduce failure risks. In this paper, we introduce a comparison between the different machine learning techniques that can be applied for low earth orbit satellite telemetry mining. The techniques are evaluated on the bases of calculating the prediction accuracy using mean error and correlation estimation. We used telemetry data received from Egyptsat-1 satellite including parameters such as battery temperature, power bus voltage and load current. The research summarizes the performance of processing telemetry data using autoregressive integrated moving average (ARIMA), Multilayer Perceptron (MLP), Recurrent Neural Network (RNN), Long Short-Term Memory Recurrent Neural Network (LSTM RNN), Deep Long Short-Term Memory Recurrent Neural Networks (DLSTM RNNs), Gated Recurrent Unit Recurrent Neural Network (GRU RNN), and Deep Gated Recurrent Unit Recurrent Neural Networks (DGRU RNNs).
Author Related Publications
Sarah Khalil Mohamed Ibrahim, "Study of Climate Change Detection in North-East Africa Using Machine Learning and Satellite Data", IEEE, 2021
More
Sarah Khalil Mohamed Ibrahim, "Spacecraft Fault Diagnosis based on Logical Analysis of Data and Fault Tree Analysis", IEEE-4th International Conference on NEW PARADIGMS IN ELECTRONICS & INFORMATION TECHNOLOGY (PEIT’17), 2017
More
Sarah Khalil Mohamed Ibrahim, "Machine Learning Techniques for Satellite Fault Diagnosis", ScienceDirect, 2020
More
Department Related Publications
Mira Magdy Sobhy Suliman, "COMPARISON BETWEEN HAAR WAVELET TRANSFORM, DCT AND A PROPOSED COLUMN-MEAN-METHOD BASED IRIS ENCODERS", جامعة الزقازيق-المجلة العلمية, 2014
More
Ahmed Mohamed Helmy Elsadiek, "Efficient and Sustainable Reconfiguration of Distribution Networks via Metaheuristic Optimization", IEEE, 2022
More
Sarah Khalil Mohamed Ibrahim, "Study of Climate Change Detection in North-East Africa Using Machine Learning and Satellite Data", IEEE, 2021
More
Ibrahiem Elsayed Mohamed Zedan, "Improved subspace identication with prior information using constrained least-squares", IET, 2011
More
Ahmed Mahmoud Abdelrahman Elanany, "Improved subspace identication with prior information using constrained least-squares", IET, 2011
More
جامعة المنصورة
جامعة الاسكندرية
جامعة القاهرة
جامعة سوهاج
جامعة الفيوم
جامعة بنها
جامعة دمياط
جامعة بورسعيد
جامعة حلوان
جامعة السويس
شراقوة
جامعة المنيا
جامعة دمنهور
جامعة المنوفية
جامعة أسوان
جامعة جنوب الوادى
جامعة قناة السويس
جامعة عين شمس
جامعة أسيوط
جامعة كفر الشيخ
جامعة السادات
جامعة طنطا
جامعة بنى سويف