Highly accurate and numerically stable higher order QPCET moments for color image representation

Faculty Computer Science Year: 2017
Type of Publication: ZU Hosted Pages: 29-36
Authors:
Journal: Pattern Recognition Letters Elsevier Volume:
Keywords : Highly accurate , numerically stable higher order    
Abstract:
A novel method is proposed for highly accurate, fast and numerically stable computation of the higher order Quaternion Polar Complex Exponential Transform (QPCET) moments for color images in polar Coordinates. A novel mathematical formula i
   
     
 
       

Author Related Publications

  • Khalied Mohamed Hosny, "SEMANTIC REPRESENTATION OF MUSIC DATABASE USING NEW ONTOLOGY-BASED SYSTEM", Journal of Theoretical and Applied Information Technology, 2020 More
  • Khalied Mohamed Hosny, "Building a New Semantic Social Network Using Semantic Web-Based Techniques", ِASPG, 2021 More
  • Khalied Mohamed Hosny, "New Graphical Ultimate Processor for Mapping Relational Database to Resource Description Framework", IEEE, 2022 More
  • Khalied Mohamed Hosny, "Fast computation of accurate Zernike moments", Springer, 2008 More
  • Khalied Mohamed Hosny, "Accurate Computation of QPCET for Color Images in Different Coordinate Systems", SPIE, 2017 More

Department Related Publications

  • Walid Ibrahim Ibrahim Khedr, "Ad-hoc on Demand Authentication Chain Protocol - An Authentication Protocol for Ad-Hoc Networks", Institute for Systems and Technologies of Information, Control and Communication, 2015 More
  • Khalied Mohamed Hosny, "Robust Color Image Hashing Using Quaternion Polar Complex Exponential Transform for Image Authentication", Springer, 2018 More
  • Ehab Roshdy Mohamed, "Efficient compression of volumetric medical images using Legendre moments and differential evolution", Springer, 2020 More
  • Asmaa Mohamed Khalid Mohamed Abbas, "Efficient compression of volumetric medical images using Legendre moments and differential evolution", Springer, 2020 More
  • Khalied Mohamed Hosny, "Efficient compression of volumetric medical images using Legendre moments and differential evolution", Springer, 2020 More
Tweet