Zagazig University Digital Repository
Home
Thesis & Publications
All Contents
Publications
Thesis
Graduation Projects
Research Area
Research Area Reports
Search by Research Area
Universities Thesis
ACADEMIC Links
ACADEMIC RESEARCH
Zagazig University Authors
Africa Research Statistics
Google Scholar
Research Gate
Researcher ID
CrossRef
An incremental adaptive procedure for viscoelastic contact problems
Faculty
Not Specified
Year:
2007
Type of Publication:
Article
Pages:
305-313
Authors:
Mahmoud, Fatin F, Attia, Mohamed A, El-Shatei, Ahmed G
DOI:
10.1115/1.2464139
Journal:
JOURNAL OF TRIBOLOGY-TRANSACTIONS OF THE ASME ASME-AMER SOC MECHANICAL ENG
Volume:
129
Research Area:
Engineering
ISSN
ISI:000245838200009
Keywords :
contact mechanics, viscoelasticity, Wiechert model, mathematical programming, finite element method
Abstract:
Contact pressure distribution throughout the contact interface has a vital role on the tribological aspects of the contact systems. Generally, contact of deformable bodies is a nonlinear problem. Viscoelastic materials have a time-dependent response, since both viscous and elastic characteristics depend on time. Such types of materials have the capability of storing and dissipating energy. When at least one of the contacting bodies is made of a viscoelastic material, contact problems become more difficult, and a nonlinear time-dependent contact problem is obtained. The objective of this paper is to develop an incremental adaptive computational model capable of handling quasistatic viscoelastic frictionless contact problems. The Wiechert model, as an effective model capable of describing both creep and relaxation phenomena, is adopted to simulate the linear behavior of viscoelastic materials. The resulting constitutive integral equations are linearized and, therefore complications that arise during the direct integration of these equations, specially with contact problems, are avoided. In addition, the incremental convex programming method is adopted and modified to accommodate the contact problem of viscoelastic bodies. The Lagrange multiplier method is adopted to enforce the contact constraints. Two different contact problems are presented to demonstrate the efficient applicability of the proposed model.
Online
PDF
جامعة المنصورة
جامعة الاسكندرية
جامعة القاهرة
جامعة سوهاج
جامعة الفيوم
جامعة بنها
جامعة دمياط
جامعة بورسعيد
جامعة حلوان
جامعة السويس
شراقوة
جامعة المنيا
جامعة دمنهور
جامعة المنوفية
جامعة أسوان
جامعة جنوب الوادى
جامعة قناة السويس
جامعة عين شمس
جامعة أسيوط
جامعة كفر الشيخ
جامعة السادات
جامعة طنطا
جامعة بنى سويف