Zagazig University Digital Repository
Home
Thesis & Publications
All Contents
Publications
Thesis
Graduation Projects
Research Area
Research Area Reports
Search by Research Area
Universities Thesis
ACADEMIC Links
ACADEMIC RESEARCH
Zagazig University Authors
Africa Research Statistics
Google Scholar
Research Gate
Researcher ID
CrossRef
Molecular and genetic basis of platelet disorders
Faculty
Medicine
Year:
2009
Type of Publication:
Theses
Pages:
115
Authors:
Atef Mohammed Mohamed Khalil
BibID
11013636
Keywords :
Pediatrics
Abstract:
The hemostatic system consists of platelets, coagulation factors, and the endothelial cells lining the blood vessels. The platelets arise from the cytoplasmic fragmentation of megakaryocytes in the bone marrow and circulate in blood as disk-shapeda nucleate particles. The inherited and congenital thrombocytopenias represent a very diverse group of disorders ranging from those with little or no hemorrhagic problems to those where significant mortality occurs within the neonatal period if appropriate therapy is not initiated. The inherited thrombocytopenias are very rare disorders compared with the congenital or acquired thrombocytopenias and making the correct diagnosis at the outset is very important as it usually avoids the prescribing of unnecessary and potentially toxic therapies. The differential diagnosis of neonatal thrombocytopenia differs enormously depending on the general well-being of the infant and therefore a detailed maternal history and neonatal examination are essential in making a speedy diagnosis. Platelet concentrate transfusions are the mainstay of therapy in the inherited group, whereas treating the underlying cause in the congenital group usually raises the platelet count into the normal range. The past 25 years have witnessed remarkable progress in the understanding, at the molecular level, of the mechanism(s) by which platelet production and survival is controlled. More recently, the molecular basis of MYH9-related disease has been elucidated. Despite these impressive breakthroughs, much remains to be learned about the molecular defects responsible for the majority of inherited thrombocytopenias. No doubt, the next 25 years will see not only the isolation of the rogue genes responsible for these conditions but also gene therapies for these disorders will become a reality.
PDF
جامعة المنصورة
جامعة الاسكندرية
جامعة القاهرة
جامعة سوهاج
جامعة الفيوم
جامعة بنها
جامعة دمياط
جامعة بورسعيد
جامعة حلوان
جامعة السويس
شراقوة
جامعة المنيا
جامعة دمنهور
جامعة المنوفية
جامعة أسوان
جامعة جنوب الوادى
جامعة قناة السويس
جامعة عين شمس
جامعة أسيوط
جامعة كفر الشيخ
جامعة السادات
جامعة طنطا
جامعة بنى سويف