Generalized Inverse Gamma Distribution and its Application in Reliability

Faculty Commerce Year: 2015
Type of Publication: ZU Hosted Pages:
Authors:
Journal: Communications in Statistics—Theory and Methods, United States of America Volume:
Keywords : Generalized Inverse Gamma Distribution and , Application , Reliability    
Abstract:
In this paper, we introduce a new reliability model of inverse gamma distribution referred to as the generalized inverse gamma distribution (GIG). A generalization of inverse gamma distribution is defined based on the exact form of generali
   
     
 
       

Author Related Publications

  • Mohamed Elsayed Ahmed Mead, "A New Generalization of Burr XII Distribution", Pakistan, 2014 More
  • Mohamed Elsayed Ahmed Mead, "An Extended Pareto Distribution", Pakistan, 2014 More
  • Mohamed Elsayed Ahmed Mead, "A note on Kumaraswamy Fréchet distribution", Australia, 2014 More
  • Mohamed Elsayed Ahmed Mead, "STATISTICAL PROPERTIES FOR THE GENERALIZED COMPOUND GAMMA DISTRIBUTION", كلية التجارة - جامعة بنها, 2008 More
  • Mohamed Elsayed Ahmed Mead, "The Applications of the Generalized Beta II Distribution in Inventory Control", Austuralia, 2013 More

Department Related Publications

  • Wael Shehta Abu El Azm Mansour, "The Sampling Distribution of the Maximum Likelihood Estimators for the Parameters of Beta-Binomial Distribution", International Mathematical Forum,, 2013 More
  • Osama Elsayed Eraky Mohamed Abokhasem, "Statistical Analysis Based on Progressive Type-I Censored Scheme from Alpha Power Exponential Distribution with Engineering and Medical Applications", Hindawi, 2022 More
  • Mohammed Hassan Hassan Elsayed, "دراسة إحصائية لأنظمة صفوف الإنتظار مع إعادة المحاولة Statistical Study for Queueing Systems with Retrials", 2024 More
  • Ibraheem Mosa Abdelfattah Mosa, "دراسة إحصائية لأنظمة صفوف الإنتظار مع إعادة المحاولة Statistical Study for Queueing Systems with Retrials", 2024 More
  • Mohamed Elsayed Ahmed Mead, "دراسة إحصائية لأنظمة صفوف الإنتظار مع إعادة المحاولة Statistical Study for Queueing Systems with Retrials", 2024 More
Tweet