| Abstract: |
SUMMARYThere is growing interest in QT dispersion as a marker for arrhythmia potential being a marker of inhomogenicity of ventricular repolarization. The QT dispersion is increased in myocardial ischemia and infarction, and levels are higher in patients with ventricular arrhythmias. This study was performed to assess QT dispersion in patients with acute myocardial infarction treated with thrombolytic therapy with successful reperfusion versus those who treated with thrombolytic therapy with failed reperfusion and those who treated with conventional therapy and to correlate between QT dispersion and the complicating serious ventricular arrhythmias following acute myocardial infarction. And it is also performed to assess the influence of age, sex, obesity, smoking, diabetes mellitus, hypertension and site of infarction on QT dispersion. The study included 100 patients with recent acute myocardial infarction and they are classified to 3 groups:Group 1: 30 patients who received streptokinase with successful reperfusion.Group 2: 30 patients who received streptokinase with failed reperfusion.Group 3: 40 patients who did not receive streptokinase (control group).Every patient was subjected to full history taking and thorough clinical examination. Analysis of serum electrolytes (Na, K and ca) was done and cases showing abnormal results were excluded. Serum CPK was checked on admission, after 6 hours, after 12 hours and after 24 hours after onset of thrombolytic therapy. ECG was done for every patient on admission, two hours post thrombolytic therapy and predischarge in groups I and 2. In group 3, ECG was done on admission and predischarge.The study concluded that:1- There is a statistically significant reduction in QT dispersion in patients who received thrombolytic therapy with successful reperfusion versus those who received thrombolytic therapy with failed reperfusion and those who did not receive thrombolytic therapy.2- There is a reduction in the incidence of ventricular arrhythmias in patients with successful reperfusion therapy associated with the reduction in the QT dispersion. So, reduction of QT dispersion may be a mechanism of benefit of thrombolytic therapy.3- QT dispersion is increased after myocardial infarction and levels are higher in patients with ventricular arrhythmias.4- QT dispersion is influenced by hypertension, diabetes mellitus, age and site of infarction ,as it is increased in patients with hypertension, diabetes mellitus, age less than 50 years and with anterior than inferior infarction.The study recommended the following:1- Whenever not contraindicated, thrombolytic therapy should be administered as early as possible in cases with AMI.2- QT dispersion can predict the potential for ventricular arrhythmias in patients with AMI.3- Future studies are needed to confirm the value of QT dispersion in risk stratification after AMI.SUMMARYThere is growing interest in QT dispersion as a marker for arrhythmia potential being a marker of inhomogenicity of ventricular repolarization. The QT dispersion is increased in myocardial ischemia and infarction, and levels are higher in patients with ventricular arrhythmias. This study was performed to assess QT dispersion in patients with acute myocardial infarction treated with thrombolytic therapy with successful reperfusion versus those who treated with thrombolytic therapy with failed reperfusion and those who treated with conventional therapy and to correlate between QT dispersion and the complicating serious ventricular arrhythmias following acute myocardial infarction. And it is also performed to assess the influence of age, sex, obesity, smoking, diabetes mellitus, hypertension and site of infarction on QT dispersion. The study included 100 patients with recent acute myocardial infarction and they are classified to 3 groups:Group 1: 30 patients who received streptokinase with successful reperfusion.Group 2: 30 patients who received streptokinase with failed reperfusion.Group 3: 40 patients who did not receive streptokinase (control group).Every patient was subjected to full history taking and thorough clinical examination. Analysis of serum electrolytes (Na, K and ca) was done and cases showing abnormal results were excluded. Serum CPK was checked on admission, after 6 hours, after 12 hours and after 24 hours after onset of thrombolytic therapy. ECG was done for every patient on admission, two hours post thrombolytic therapy and predischarge in groups I and 2. In group 3, ECG was done on admission and predischarge.The study concluded that:1- There is a statistically significant reduction in QT dispersion in patients who received thrombolytic therapy with successful reperfusion versus those who received thrombolytic therapy with failed reperfusion and those who did not receive thrombolytic therapy.2- There is a reduction in the incidence of ventricular arrhythmias in patients with successful reperfusion therapy associated with the reduction in the QT dispersion. So, reduction of QT dispersion may be a mechanism of benefit of thrombolytic therapy.3- QT dispersion is increased after myocardial infarction and levels are higher in patients with ventricular arrhythmias.4- QT dispersion is influenced by hypertension, diabetes mellitus, age and site of infarction ,as it is increased in patients with hypertension, diabetes mellitus, age less than 50 years and with anterior than inferior infarction.The study recommended the following:1- Whenever not contraindicated, thrombolytic therapy should be administered as early as possible in cases with AMI.2- QT dispersion can predict the potential for ventricular arrhythmias in patients with AMI.3- Future studies are needed to confirm the value of QT dispersion in risk stratification after AMI.SUMMARYThere is growing interest in QT dispersion as a marker for arrhythmia potential being a marker of inhomogenicity of ventricular repolarization. The QT dispersion is increased in myocardial ischemia and infarction, and levels are higher in patients with ventricular arrhythmias. This study was performed to assess QT dispersion in patients with acute myocardial infarction treated with thrombolytic therapy with successful reperfusion versus those who treated with thrombolytic therapy with failed reperfusion and those who treated with conventional therapy and to correlate between QT dispersion and the complicating serious ventricular arrhythmias following acute myocardial infarction. And it is also performed to assess the influence of age, sex, obesity, smoking, diabetes mellitus, hypertension and site of infarction on QT dispersion. The study included 100 patients with recent acute myocardial infarction and they are classified to 3 groups:Group 1: 30 patients who received streptokinase with successful reperfusion.Group 2: 30 patients who received streptokinase with failed reperfusion.Group 3: 40 patients who did not receive streptokinase (control group).Every patient was subjected to full history taking and thorough clinical examination. Analysis of serum electrolytes (Na, K and ca) was done and cases showing abnormal results were excluded. Serum CPK was checked on admission, after 6 hours, after 12 hours and after 24 hours after onset of thrombolytic therapy. ECG was done for every patient on admission, two hours post thrombolytic therapy and predischarge in groups I and 2. In group 3, ECG was done on admission and predischarge.The study concluded that:1- There is a statistically significant reduction in QT dispersion in patients who received thrombolytic therapy with successful reperfusion versus those who received thrombolytic therapy with failed reperfusion and those who did not receive thrombolytic therapy.2- There is a reduction in the incidence of ventricular arrhythmias in patients with successful reperfusion therapy associated with the reduction in the QT dispersion. So, reduction of QT dispersion may be a mechanism of benefit of thrombolytic therapy.3- QT dispersion is increased after myocardial infarction and levels are higher in patients with ventricular arrhythmias.4- QT dispersion is influenced by hypertension, diabetes mellitus, age and site of infarction ,as it is increased in patients with hypertension, diabetes mellitus, age less than 50 years and with anterior than inferior infarction.The study recommended the following:1- Whenever not contraindicated, thrombolytic therapy should be administered as early as possible in cases with AMI.2- QT dispersion can predict the potential for ventricular arrhythmias in patients with AMI.3- Future studies are needed to confirm the value of QT dispersion in risk stratification after AMI.SUMMARYThere is growing interest in QT dispersion as a marker for arrhythmia potential being a marker of inhomogenicity of ventricular repolarization. The QT dispersion is increased in myocardial ischemia and infarction, and levels are higher in patients with ventricular arrhythmias. This study was performed to assess QT dispersion in patients with acute myocardial infarction treated with thrombolytic therapy with successful reperfusion versus those who treated with thrombolytic therapy with failed reperfusion and those who treated with conventional therapy and to correlate between QT dispersion and the complicating serious ventricular arrhythmias following acute myocardial infarction. And it is also performed to assess the influence of age, sex, obesity, smoking, diabetes mellitus, hypertension and site of infarction on QT dispersion. The study included 100 patients with recent acute myocardial infarction and they are classified to 3 groups:Group 1: 30 patients who received streptokinase with successful reperfusion.Group 2: 30 patients who received streptokinase with failed reperfusion.Group 3: 40 patients who did not receive streptokinase (control group).Every patient was subjected to full history taking and thorough clinical examination. Analysis of serum electrolytes (Na, K and ca) was done and cases showing abnormal results were excluded. Serum CPK was checked on admission, after 6 hours, after 12 hours and after 24 hours after onset of thrombolytic therapy. ECG was done for every patient on admission, two hours post thrombolytic therapy and predischarge in groups I and 2. In group 3, ECG was done on admission and predischarge.The study concluded that:1- There is a statistically significant reduction in QT dispersion in patients who received thrombolytic therapy with successful reperfusion versus those who received thrombolytic therapy with failed reperfusion and those who did not receive thrombolytic therapy.2- There is a reduction in the incidence of ventricular arrhythmias in patients with successful reperfusion therapy associated with the reduction in the QT dispersion. So, reduction of QT dispersion may be a mechanism of benefit of thrombolytic therapy.3- QT dispersion is increased after myocardial infarction and levels are higher in patients with ventricular arrhythmias.4- QT dispersion is influenced by hypertension, diabetes mellitus, age and site of infarction ,as it is increased in patients with hypertension, diabetes mellitus, age less than 50 years and with anterior than inferior infarction.The study recommended the following:1- Whenever not contraindicated, thrombolytic therapy should be administered as early as possible in cases with AMI.2- QT dispersion can predict the potential for ventricular arrhythmias in patients with AMI.3- Future studies are needed to confirm the value of QT dispersion in risk stratification after AMI.SUMMARYThere is growing interest in QT dispersion as a marker for arrhythmia potential being a marker of inhomogenicity of ventricular repolarization. The QT dispersion is increased in myocardial ischemia and infarction, and levels are higher in patients with ventricular arrhythmias. This study was performed to assess QT dispersion in patients with acute myocardial infarction treated with thrombolytic therapy with successful reperfusion versus those who treated with thrombolytic therapy with failed reperfusion and those who treated with conventional therapy and to correlate between QT dispersion and the complicating serious ventricular arrhythmias following acute myocardial infarction. And it is also performed to assess the influence of age, sex, obesity, smoking, diabetes mellitus, hypertension and site of infarction on QT dispersion. The study included 100 patients with recent acute myocardial infarction and they are classified to 3 groups:Group 1: 30 patients who received streptokinase with successful reperfusion.Group 2: 30 patients who received streptokinase with failed reperfusion.Group 3: 40 patients who did not receive streptokinase (control group).Every patient was subjected to full history taking and thorough clinical examination. Analysis of serum electrolytes (Na, K and ca) was done and cases showing abnormal results were excluded. Serum CPK was checked on admission, after 6 hours, after 12 hours and after 24 hours after onset of thrombolytic therapy. ECG was done for every patient on admission, two hours post thrombolytic therapy and predischarge in groups I and 2. In group 3, ECG was done on admission and predischarge.The study concluded that:1- There is a statistically significant reduction in QT dispersion in patients who received thrombolytic therapy with successful reperfusion versus those who received thrombolytic therapy with failed reperfusion and those who did not receive thrombolytic therapy.2- There is a reduction in the incidence of ventricular arrhythmias in patients with successful reperfusion therapy associated with the reduction in the QT dispersion. So, reduction of QT dispersion may be a mechanism of benefit of thrombolytic therapy.3- QT dispersion is increased after myocardial infarction and levels are higher in patients with ventricular arrhythmias.4- QT dispersion is influenced by hypertension, diabetes mellitus, age and site of infarction ,as it is increased in patients with hypertension, diabetes mellitus, age less than 50 years and with anterior than inferior infarction.The study recommended the following:1- Whenever not contraindicated, thrombolytic therapy should be administered as early as possible in cases with AMI.2- QT dispersion can predict the potential for ventricular arrhythmias in patients with AMI.3- Future studies are needed to confirm the value of QT dispersion in risk stratification after AMI.SUMMARYThere is growing interest in QT dispersion as a marker for arrhythmia potential being a marker of inhomogenicity of ventricular repolarization. The QT dispersion is increased in myocardial ischemia and infarction, and levels are higher in patients with ventricular arrhythmias. This study was performed to assess QT dispersion in patients with acute myocardial infarction treated with thrombolytic therapy with successful reperfusion versus those who treated with thrombolytic therapy with failed reperfusion and those who treated with conventional therapy and to correlate between QT dispersion and the complicating serious ventricular arrhythmias following acute myocardial infarction. And it is also performed to assess the influence of age, sex, obesity, smoking, diabetes mellitus, hypertension and site of infarction on QT dispersion. The study included 100 patients with recent acute myocardial infarction and they are classified to 3 groups:Group 1: 30 patients who received streptokinase with successful reperfusion.Group 2: 30 patients who received streptokinase with failed reperfusion.Group 3: 40 patients who did not receive streptokinase (control group).Every patient was subjected to full history taking and thorough clinical examination. Analysis of serum electrolytes (Na, K and ca) was done and cases showing abnormal results were excluded. Serum CPK was checked on admission, after 6 hours, after 12 hours and after 24 hours after onset of thrombolytic therapy. ECG was done for every patient on admission, two hours post thrombolytic therapy and predischarge in groups I and 2. In group 3, ECG was done on admission and predischarge.The study concluded that:1- There is a statistically significant reduction in QT dispersion in patients who received thrombolytic therapy with successful reperfusion versus those who received thrombolytic therapy with failed reperfusion and those who did not receive thrombolytic therapy.2- There is a reduction in the incidence of ventricular arrhythmias in patients with successful reperfusion therapy associated with the reduction in the QT dispersion. So, reduction of QT dispersion may be a mechanism of benefit of thrombolytic therapy.3- QT dispersion is increased after myocardial infarction and levels are higher in patients with ventricular arrhythmias.4- QT dispersion is influenced by hypertension, diabetes mellitus, age and site of infarction ,as it is increased in patients with hypertension, diabetes mellitus, age less than 50 years and with anterior than inferior infarction.The study recommended the following:1- Whenever not contraindicated, thrombolytic therapy should be administered as early as possible in cases with AMI.2- QT dispersion can predict the potential for ventricular arrhythmias in patients with AMI.3- Future studies are needed to confirm the value of QT dispersion in risk stratification after AMI.SUMMARYThere is growing interest in QT dispersion as a marker for arrhythmia potential being a marker of inhomogenicity of ventricular repolarization. The QT dispersion is increased in myocardial ischemia and infarction, and levels are higher in patients with ventricular arrhythmias. This study was performed to assess QT dispersion in patients with acute myocardial infarction treated with thrombolytic therapy with successful reperfusion versus those who treated with thrombolytic therapy with failed reperfusion and those who treated with conventional therapy and to correlate between QT dispersion and the complicating serious ventricular arrhythmias following acute myocardial infarction. And it is also performed to assess the influence of age, sex, obesity, smoking, diabetes mellitus, hypertension and site of infarction on QT dispersion. The study included 100 patients with recent acute myocardial infarction and they are classified to 3 groups:Group 1: 30 patients who received streptokinase with successful reperfusion.Group 2: 30 patients who received streptokinase with failed reperfusion.Group 3: 40 patients who did not receive streptokinase (control group).Every patient was subjected to full history taking and thorough clinical examination. Analysis of serum electrolytes (Na, K and ca) was done and cases showing abnormal results were excluded. Serum CPK was checked on admission, after 6 hours, after 12 hours and after 24 hours after onset of thrombolytic therapy. ECG was done for every patient on admission, two hours post thrombolytic therapy and predischarge in groups I and 2. In group 3, ECG was done on admission and predischarge.The study concluded that:1- There is a statistically significant reduction in QT dispersion in patients who received thrombolytic therapy with successful reperfusion versus those who received thrombolytic therapy with failed reperfusion and those who did not receive thrombolytic therapy.2- There is a reduction in the incidence of ventricular arrhythmias in patients with successful reperfusion therapy associated with the reduction in the QT dispersion. So, reduction of QT dispersion may be a mechanism of benefit of thrombolytic therapy.3- QT dispersion is increased after myocardial infarction and levels are higher in patients with ventricular arrhythmias.4- QT dispersion is influenced by hypertension, diabetes mellitus, age and site of infarction ,as it is increased in patients with hypertension, diabetes mellitus, age less than 50 years and with anterior than inferior infarction.The study recommended the following:1- Whenever not contraindicated, thrombolytic therapy should be administered as early as possible in cases with AMI.2- QT dispersion can predict the potential for ventricular arrhythmias in patients with AMI.3- Future studies are needed to confirm the value of QT dispersion in risk stratification after AMI.SUMMARYThere is growing interest in QT dispersion as a marker for arrhythmia potential being a marker of inhomogenicity of ventricular repolarization. The QT dispersion is increased in myocardial ischemia and infarction, and levels are higher in patients with ventricular arrhythmias. This study was performed to assess QT dispersion in patients with acute myocardial infarction treated with thrombolytic therapy with successful reperfusion versus those who treated with thrombolytic therapy with failed reperfusion and those who treated with conventional therapy and to correlate between QT dispersion and the complicating serious ventricular arrhythmias following acute myocardial infarction. And it is also performed to assess the influence of age, sex, obesity, smoking, diabetes mellitus, hypertension and site of infarction on QT dispersion. The study included 100 patients with recent acute myocardial infarction and they are classified to 3 groups:Group 1: 30 patients who received streptokinase with successful reperfusion.Group 2: 30 patients who received streptokinase with failed reperfusion.Group 3: 40 patients who did not receive streptokinase (control group).Every patient was subjected to full history taking and thorough clinical examination. Analysis of serum electrolytes (Na, K and ca) was done and cases showing abnormal results were excluded. Serum CPK was checked on admission, after 6 hours, after 12 hours and after 24 hours after onset of thrombolytic therapy. ECG was done for every patient on admission, two hours post thrombolytic therapy and predischarge in groups I and 2. In group 3, ECG was done on admission and predischarge.The study concluded that:1- There is a statistically significant reduction in QT dispersion in patients who received thrombolytic therapy with successful reperfusion versus those who received thrombolytic therapy with failed reperfusion and those who did not receive thrombolytic therapy.2- There is a reduction in the incidence of ventricular arrhythmias in patients with successful reperfusion therapy associated with the reduction in the QT dispersion. So, reduction of QT dispersion may be a mechanism of benefit of thrombolytic therapy.3- QT dispersion is increased after myocardial infarction and levels are higher in patients with ventricular arrhythmias.4- QT dispersion is influenced by hypertension, diabetes mellitus, age and site of infarction ,as it is increased in patients with hypertension, diabetes mellitus, age less than 50 years and with anterior than inferior infarction.The study recommended the following:1- Whenever not contraindicated, thrombolytic therapy should be administered as early as possible in cases with AMI.2- QT dispersion can predict the potential for ventricular arrhythmias in patients with AMI.3- Future studies are needed to confirm the value of QT dispersion in risk stratification after AMI.SUMMARYThere is growing interest in QT dispersion as a marker for arrhythmia potential being a marker of inhomogenicity of ventricular repolarization. The QT dispersion is increased in myocardial ischemia and infarction, and levels are higher in patients with ventricular arrhythmias. This study was performed to assess QT dispersion in patients with acute myocardial infarction treated with thrombolytic therapy with successful reperfusion versus those who treated with thrombolytic therapy with failed reperfusion and those who treated with conventional therapy and to correlate between QT dispersion and the complicating serious ventricular arrhythmias following acute myocardial infarction. And it is also performed to assess the influence of age, sex, obesity, smoking, diabetes mellitus, hypertension and site of infarction on QT dispersion. The study included 100 patients with recent acute myocardial infarction and they are classified to 3 groups:Group 1: 30 patients who received streptokinase with successful reperfusion.Group 2: 30 patients who received streptokinase with failed reperfusion.Group 3: 40 patients who did not receive streptokinase (control group).Every patient was subjected to full history taking and thorough clinical examination. Analysis of serum electrolytes (Na, K and ca) was done and cases showing abnormal results were excluded. Serum CPK was checked on admission, after 6 hours, after 12 hours and after 24 hours after onset of thrombolytic therapy. ECG was done for every patient on admission, two hours post thrombolytic therapy and predischarge in groups I and 2. In group 3, ECG was done on admission and predischarge.The study concluded that:1- There is a statistically significant reduction in QT dispersion in patients who received thrombolytic therapy with successful reperfusion versus those who received thrombolytic therapy with failed reperfusion and those who did not receive thrombolytic therapy.2- There is a reduction in the incidence of ventricular arrhythmias in patients with successful reperfusion therapy associated with the reduction in the QT dispersion. So, reduction of QT dispersion may be a mechanism of benefit of thrombolytic therapy.3- QT dispersion is increased after myocardial infarction and levels are higher in patients with ventricular arrhythmias.4- QT dispersion is influenced by hypertension, diabetes mellitus, age and site of infarction ,as it is increased in patients with hypertension, diabetes mellitus, age less than 50 years and with anterior than inferior infarction.The study recommended the following:1- Whenever not contraindicated, thrombolytic therapy should be administered as early as possible in cases with AMI.2- QT dispersion can predict the potential for ventricular arrhythmias in patients with AMI.3- Future studies are needed to confirm the value of QT dispersion in risk stratification after AMI.SUMMARYThere is growing interest in QT dispersion as a marker for arrhythmia potential being a marker of inhomogenicity of ventricular repolarization. The QT dispersion is increased in myocardial ischemia and infarction, and levels are higher in patients with ventricular arrhythmias. This study was performed to assess QT dispersion in patients with acute myocardial infarction treated with thrombolytic therapy with successful reperfusion versus those who treated with thrombolytic therapy with failed reperfusion and those who treated with conventional therapy and to correlate between QT dispersion and the complicating serious ventricular arrhythmias following acute myocardial infarction. And it is also performed to assess the influence of age, sex, obesity, smoking, diabetes mellitus, hypertension and site of infarction on QT dispersion. The study included 100 patients with recent acute myocardial infarction and they are classified to 3 groups:Group 1: 30 patients who received streptokinase with successful reperfusion.Group 2: 30 patients who received streptokinase with failed reperfusion.Group 3: 40 patients who did not receive streptokinase (control group).Every patient was subjected to full history taking and thorough clinical examination. Analysis of serum electrolytes (Na, K and ca) was done and cases showing abnormal results were excluded. Serum CPK was checked on admission, after 6 hours, after 12 hours and after 24 hours after onset of thrombolytic therapy. ECG was done for every patient on admission, two hours post thrombolytic therapy and predischarge in groups I and 2. In group 3, ECG was done on admission and predischarge.The study concluded that:1- There is a statistically significant reduction in QT dispersion in patients who received thrombolytic therapy with successful reperfusion versus those who received thrombolytic therapy with failed reperfusion and those who did not receive thrombolytic therapy.2- There is a reduction in the incidence of ventricular arrhythmias in patients with successful reperfusion therapy associated with the reduction in the QT dispersion. So, reduction of QT dispersion may be a mechanism of benefit of thrombolytic therapy.3- QT dispersion is increased after myocardial infarction and levels are higher in patients with ventricular arrhythmias.4- QT dispersion is influenced by hypertension, diabetes mellitus, age and site of infarction ,as it is increased in patients with hypertension, diabetes mellitus, age less than 50 years and with anterior than inferior infarction.The study recommended the following:1- Whenever not contraindicated, thrombolytic therapy should be administered as early as possible in cases with AMI.2- QT dispersion can predict the potential for ventricular arrhythmias in patients with AMI.3- Future studies are needed to confirm the value of QT dispersion in risk stratification after AMI.SUMMARYThere is growing interest in QT dispersion as a marker for arrhythmia potential being a marker of inhomogenicity of ventricular repolarization. The QT dispersion is increased in myocardial ischemia and infarction, and levels are higher in patients with ventricular arrhythmias. This study was performed to assess QT dispersion in patients with acute myocardial infarction treated with thrombolytic therapy with successful reperfusion versus those who treated with thrombolytic therapy with failed reperfusion and those who treated with conventional therapy and to correlate between QT dispersion and the complicating serious ventricular arrhythmias following acute myocardial infarction. And it is also performed to assess the influence of age, sex, obesity, smoking, diabetes mellitus, hypertension and site of infarction on QT dispersion. The study included 100 patients with recent acute myocardial infarction and they are classified to 3 groups:Group 1: 30 patients who received streptokinase with successful reperfusion.Group 2: 30 patients who received streptokinase with failed reperfusion.Group 3: 40 patients who did not receive streptokinase (control group).Every patient was subjected to full history taking and thorough clinical examination. Analysis of serum electrolytes (Na, K and ca) was done and cases showing abnormal results were excluded. Serum CPK was checked on admission, after 6 hours, after 12 hours and after 24 hours after onset of thrombolytic therapy. ECG was done for every patient on admission, two hours post thrombolytic therapy and predischarge in groups I and 2. In group 3, ECG was done on admission and predischarge.The study concluded that:1- There is a statistically significant reduction in QT dispersion in patients who received thrombolytic therapy with successful reperfusion versus those who received thrombolytic therapy with failed reperfusion and those who did not receive thrombolytic therapy.2- There is a reduction in the incidence of ventricular arrhythmias in patients with successful reperfusion therapy associated with the reduction in the QT dispersion. So, reduction of QT dispersion may be a mechanism of benefit of thrombolytic therapy.3- QT dispersion is increased after myocardial infarction and levels are higher in patients with ventricular arrhythmias.4- QT dispersion is influenced by hypertension, diabetes mellitus, age and site of infarction ,as it is increased in patients with hypertension, diabetes mellitus, age less than 50 years and with anterior than inferior infarction.The study recommended the following:1- Whenever not contraindicated, thrombolytic therapy should be administered as early as possible in cases with AMI.2- QT dispersion can predict the potential for ventricular arrhythmias in patients with AMI.3- Future studies are needed to confirm the value of QT dispersion in risk stratification after AMI.SUMMARYThere is growing interest in QT dispersion as a marker for arrhythmia potential being a marker of inhomogenicity of ventricular repolarization. The QT dispersion is increased in myocardial ischemia and infarction, and levels are higher in patients with ventricular arrhythmias. This study was performed to assess QT dispersion in patients with acute myocardial infarction treated with thrombolytic therapy with successful reperfusion versus those who treated with thrombolytic therapy with failed reperfusion and those who treated with conventional therapy and to correlate between QT dispersion and the complicating serious ventricular arrhythmias following acute myocardial infarction. And it is also performed to assess the influence of age, sex, obesity, smoking, diabetes mellitus, hypertension and site of infarction on QT dispersion. The study included 100 patients with recent acute myocardial infarction and they are classified to 3 groups:Group 1: 30 patients who received streptokinase with successful reperfusion.Group 2: 30 patients who received streptokinase with failed reperfusion.Group 3: 40 patients who did not receive streptokinase (control group).Every patient was subjected to full history taking and thorough clinical examination. Analysis of serum electrolytes (Na, K and ca) was done and cases showing abnormal results were excluded. Serum CPK was checked on admission, after 6 hours, after 12 hours and after 24 hours after onset of thrombolytic therapy. ECG was done for every patient on admission, two hours post thrombolytic therapy and predischarge in groups I and 2. In group 3, ECG was done on admission and predischarge.The study concluded that:1- There is a statistically significant reduction in QT dispersion in patients who received thrombolytic therapy with successful reperfusion versus those who received thrombolytic therapy with failed reperfusion and those who did not receive thrombolytic therapy.2- There is a reduction in the incidence of ventricular arrhythmias in patients with successful reperfusion therapy associated with the reduction in the QT dispersion. So, reduction of QT dispersion may be a mechanism of benefit of thrombolytic therapy.3- QT dispersion is increased after myocardial infarction and levels are higher in patients with ventricular arrhythmias.4- QT dispersion is influenced by hypertension, diabetes mellitus, age and site of infarction ,as it is increased in patients with hypertension, diabetes mellitus, age less than 50 years and with anterior than inferior infarction.The study recommended the following:1- Whenever not contraindicated, thrombolytic therapy should be administered as early as possible in cases with AMI.2- QT dispersion can predict the potential for ventricular arrhythmias in patients with AMI.3- Future studies are needed to confirm the value of QT dispersion in risk stratification after AMI.SUMMARYThere is growing interest in QT dispersion as a marker for arrhythmia potential being a marker of inhomogenicity of ventricular repolarization. The QT dispersion is increased in myocardial ischemia and infarction, and levels are higher in patients with ventricular arrhythmias. This study was performed to assess QT dispersion in patients with acute myocardial infarction treated with thrombolytic therapy with successful reperfusion versus those who treated with thrombolytic therapy with failed reperfusion and those who treated with conventional therapy and to correlate between QT dispersion and the complicating serious ventricular arrhythmias following acute myocardial infarction. And it is also performed to assess the influence of age, sex, obesity, smoking, diabetes mellitus, hypertension and site of infarction on QT dispersion. The study included 100 patients with recent acute myocardial infarction and they are classified to 3 groups:Group 1: 30 patients who received streptokinase with successful reperfusion.Group 2: 30 patients who received streptokinase with failed reperfusion.Group 3: 40 patients who did not receive streptokinase (control group).Every patient was subjected to full history taking and thorough clinical examination. Analysis of serum electrolytes (Na, K and ca) was done and cases showing abnormal results were excluded. Serum CPK was checked on admission, after 6 hours, after 12 hours and after 24 hours after onset of thrombolytic therapy. ECG was done for every patient on admission, two hours post thrombolytic therapy and predischarge in groups I and 2. In group 3, ECG was done on admission and predischarge.The study concluded that:1- There is a statistically significant reduction in QT dispersion in patients who received thrombolytic therapy with successful reperfusion versus those who received thrombolytic therapy with failed reperfusion and those who did not receive thrombolytic therapy.2- There is a reduction in the incidence of ventricular arrhythmias in patients with successful reperfusion therapy associated with the reduction in the QT dispersion. So, reduction of QT dispersion may be a mechanism of benefit of thrombolytic therapy.3- QT dispersion is increased after myocardial infarction and levels are higher in patients with ventricular arrhythmias.4- QT dispersion is influenced by hypertension, diabetes mellitus, age and site of infarction ,as it is increased in patients with hypertension, diabetes mellitus, age less than 50 years and with anterior than inferior infarction.The study recommended the following:1- Whenever not contraindicated, thrombolytic therapy should be administered as early as possible in cases with AMI.2- QT dispersion can predict the potential for ventricular arrhythmias in patients with AMI.3- Future studies are needed to confirm the value of QT dispersion in risk stratification after AMI.SUMMARYThere is growing interest in QT dispersion as a marker for arrhythmia potential being a marker of inhomogenicity of ventricular repolarization. The QT dispersion is increased in myocardial ischemia and infarction, and levels are higher in patients with ventricular arrhythmias. This study was performed to assess QT dispersion in patients with acute myocardial infarction treated with thrombolytic therapy with successful reperfusion versus those who treated with thrombolytic therapy with failed reperfusion and those who treated with conventional therapy and to correlate between QT dispersion and the complicating serious ventricular arrhythmias following acute myocardial infarction. And it is also performed to assess the influence of age, sex, obesity, smoking, diabetes mellitus, hypertension and site of infarction on QT dispersion. The study included 100 patients with recent acute myocardial infarction and they are classified to 3 groups:Group 1: 30 patients who received streptokinase with successful reperfusion.Group 2: 30 patients who received streptokinase with failed reperfusion.Group 3: 40 patients who did not receive streptokinase (control group).Every patient was subjected to full history taking and thorough clinical examination. Analysis of serum electrolytes (Na, K and ca) was done and cases showing abnormal results were excluded. Serum CPK was checked on admission, after 6 hours, after 12 hours and after 24 hours after onset of thrombolytic therapy. ECG was done for every patient on admission, two hours post thrombolytic therapy and predischarge in groups I and 2. In group 3, ECG was done on admission and predischarge.The study concluded that:1- There is a statistically significant reduction in QT dispersion in patients who received thrombolytic therapy with successful reperfusion versus those who received thrombolytic therapy with failed reperfusion and those who did not receive thrombolytic therapy.2- There is a reduction in the incidence of ventricular arrhythmias in patients with successful reperfusion therapy associated with the reduction in the QT dispersion. So, reduction of QT dispersion may be a mechanism of benefit of thrombolytic therapy.3- QT dispersion is increased after myocardial infarction and levels are higher in patients with ventricular arrhythmias.4- QT dispersion is influenced by hypertension, diabetes mellitus, age and site of infarction ,as it is increased in patients with hypertension, diabetes mellitus, age less than 50 years and with anterior than inferior infarction.The study recommended the following:1- Whenever not contraindicated, thrombolytic therapy should be administered as early as possible in cases with AMI.2- QT dispersion can predict the potential for ventricular arrhythmias in patients with AMI.3- Future studies are needed to confirm the value of QT dispersion in risk stratification after AMI.All subjects of this study subjected to the following investigations: liver function tests, kidney function tests ,complete blood picture, fasting and 2 hours postprandial blood glucose level , glycosylated haemoglobin (HBA1c), urine and stool analysis, E.S.R., lipid profils, serum nerve growth level and nerve conduction velocity measurment.The following results were obtained:? There was a significant decrease in the serum nerve growth factor levels and nerve conduction velocity in the whole groups compared to the control .? There was a significant decrease in the serum nerve growth factor levels and nerve conduction velocity in type 1diabetic patients as compared to type II.? A highly significant negative correlation was found between both of nerve growth factor (NGF) and nerve conuction velocity (NCV) to each of fasting blood glucose, glcosylated haemoglbulin, duration of diabetes, symptoms and examination scores in diabetic patients with peripheral neuropathy.? There was a significant positive correlation between neuropathy scores and each of fasting blood glucose,glcosylated haemoglbulin,and duration of diabetes ,while there was a highly significant negative correlation with nerve conduction velocity of four measured nerves in diabetic patients with P.N..? A significant decrease in the serum nerve growth factor and nerve conduction velocity was found in chronic renal failure patients on conservative treatment as compared to these on regular dialysis.? A highly significant negative correlation was found between both of nerve growth factor and nerve conuction velocity to each of serum urea, and serum creatinine and symptoms and examination scores . while there was non significant correlation between them and duration of dialysis in uraemic patients with peripheral neuropathy .? There was significant positive correlation between neuropathy scores and each of serum urea, and serum creatinine , while there was a highly significant negative correlation with duration of dialysis and nerve conduction velocity of four measured nerves ,in uraemic patients with peripheral neuropathy.CONCLUSION AND RECOMMENDATIONFrom the previous results, it is clear that serum nerve growth factor is decreased in patients with peripheral neuropathy and this reduction is closely related to control, duration, and type of diabetes in diabetic patients, and to the degree of renal affection , while there is no relation between this reduction and duration of dialysis in uraemic patients. Nerve growth factor deficiency may be responsible for the pathogenesis of neuropathy which occurs in such patients. Therefore modulation of nerve growth factor may offer hope for patients with peripheral neuropathy and will open new therapeutic era in mangment of peripheral neuropathy in new future.and also both good diabetic control and foot care are very important in improvment of diabetic peripheral neuropathy in diabetic subjects.-
|
|
|