Properties and durability of grounded blast furnace slag concrete

Faculty Engineering Year: 1997
Type of Publication: Theses Pages: 153
Authors:
BibID 10524188
Keywords : Mechanical engineering    
Abstract:
In recent years, the need for a concrete of superior durability and moreeconomic than ordinary concretes is considered one of the most interestingworks for many investigators. This purpose can be accompalished by the partialreplacement of cement by the grounded slag into the concrete mix.The present work aimed at determining the effects of replacement of35% and 65% by weight of ordinary protland cement by the grounded slag oftwo types, water quenched and air cooled on the control strength properties at28 days and the durability of concrete. The control strength properties were thecompressive strength, the tensile splitting strength, flexural strength, bondstrength and the modulus of elasticity. The durability of slag concrete wasmeasured by the 6 months compressive strength and the corrosion activity ofsteel embedded in slag concrete, exposed to chlorides solution, sulphatessolution and dual solution of chlorides and sulphates as well as water as a3- The optimal tube spacing for different arrangements at is Sh /d and S/d = 1 at S/d = 1 , for both in-line and staggered arrangements.4- A correlation for in-line and staggered arrangements of the present data are developed. This correlation satisfactorily expresses the influences of Re, Pr, and cylinder spacing on the Nusselt Number Nu . The correlation can be used to predict the heat transfer coefficient with reasonable accuracy not exceeding ± 30% of measured values.4-2 Recommendations For Future WorkFrom the experimental study of heat transfer coefficient of single smooth tube, in-line and staggered arrangements of smooth tubes in a fixed volume , we recommend the following research points for the future work as follows:1- Heat transfer coefficient of the different arrangements with anther Sh/d and S/d for both in-line and staggered arrangements in the different fixed volumes.2- Heat transfer coefficient of enhanced tubes surface at the same conditions for both in-line and staggered arrangements in the same fixed volume.3- Optimum design of tube surface enhancement for both in-line and staggered arrangements .4- Study the effect of using hot and moist air on the heat transfer coefficient of the same different arrangements ( in-line and staggered) in the same fixed values.4-1 ConclusionsFrom the experimental results presented and discussed in the previous chapter, the following conclusions may be made :1- The heat transfer characteristics of tubes in fixed volume , bothfor staggered and in-line arrangements are better than those forsingle tube at the same conditions .2- Staggered arrangements of tubes in fixed volume gives better heat transfer coefficient compared with in line one and at the same conditions .3- The optimal tube spacing for different arrangements at is Sh /d and S/d = 1 at S/d = 1 , for both in-line and staggered arrangements.4- A correlation for in-line and staggered arrangements of the present data are developed. This correlation satisfactorily expresses the influences of Re, Pr, and cylinder spacing on the Nusselt Number Nu . The correlation can be used to predict the heat transfer coefficient with reasonable accuracy not exceeding ± 30% of measured values.4-2 Recommendations For Future WorkFrom the experimental study of heat transfer coefficient of single smooth tube, in-line and staggered arrangements of smooth tubes in a fixed volume , we recommend the following research points for the future work as follows:1- Heat transfer coefficient of the different arrangements with anther Sh/d and S/d for both in-line and staggered arrangements in the different fixed volumes.2- Heat transfer coefficient of enhanced tubes surface at the same conditions for both in-line and staggered arrangements in the same fixed volume.3- Optimum design of tube surface enhancement for both in-line and staggered arrangements .4- Study the effect of using hot and moist air on the heat transfer coefficient of the same different arrangements ( in-line and staggered) in the same fixed values.4-1 ConclusionsFrom the experimental results presented and discussed in the previous chapter, the following conclusions may be made :1- The heat transfer characteristics of tubes in fixed volume , bothfor staggered and in-line arrangements are better than those forsingle tube at the same conditions .2- Staggered arrangements of tubes in fixed volume gives better heat transfer coefficient compared with in line one and at the same conditions .3- The optimal tube spacing for different arrangements at is Sh /d and S/d = 1 at S/d = 1 , for both in-line and staggered arrangements.4- A correlation for in-line and staggered arrangements of the present data are developed. This correlation satisfactorily expresses the influences of Re, Pr, and cylinder spacing on the Nusselt Number Nu . The correlation can be used to predict the heat transfer coefficient with reasonable accuracy not exceeding ± 30% of measured values.4-2 Recommendations For Future WorkFrom the experimental study of heat transfer coefficient of single smooth tube, in-line and staggered arrangements of smooth tubes in a fixed volume , we recommend the following research points for the future work as follows:1- Heat transfer coefficient of the different arrangements with anther Sh/d and S/d for both in-line and staggered arrangements in the different fixed volumes.2- Heat transfer coefficient of enhanced tubes surface at the same conditions for both in-line and staggered arrangements in the same fixed volume.3- Optimum design of tube surface enhancement for both in-line and staggered arrangements .4- Study the effect of using hot and moist air on the heat transfer coefficient of the same different arrangements ( in-line and staggered) in the same fixed values.4-1 ConclusionsFrom the experimental results presented and discussed in the previous chapter, the following conclusions may be made :1- The heat transfer characteristics of tubes in fixed volume , bothfor staggered and in-line arrangements are better than those forsingle tube at the same conditions .2- Staggered arrangements of tubes in fixed volume gives better heat transfer coefficient compared with in line one and at the same conditions .3- The optimal tube spacing for different arrangements at is Sh /d and S/d = 1 at S/d = 1 , for both in-line and staggered arrangements.4- A correlation for in-line and staggered arrangements of the present data are developed. This correlation satisfactorily expresses the influences of Re, Pr, and cylinder spacing on the Nusselt Number Nu . The correlation can be used to predict the heat transfer coefficient with reasonable accuracy not exceeding ± 30% of measured values.4-2 Recommendations For Future WorkFrom the experimental study of heat transfer coefficient of single smooth tube, in-line and staggered arrangements of smooth tubes in a fixed volume , we recommend the following research points for the future work as follows:1- Heat transfer coefficient of the different arrangements with anther Sh/d and S/d for both in-line and staggered arrangements in the different fixed volumes.2- Heat transfer coefficient of enhanced tubes surface at the same conditions for both in-line and staggered arrangements in the same fixed volume.3- Optimum design of tube surface enhancement for both in-line and staggered arrangements .4- Study the effect of using hot and moist air on the heat transfer coefficient of the same different arrangements ( in-line and staggered) in the same fixed values.4-1 ConclusionsFrom the experimental results presented and discussed in the previous chapter, the following conclusions may be made :1- The heat transfer characteristics of tubes in fixed volume , bothfor staggered and in-line arrangements are better than those forsingle tube at the same conditions .2- Staggered arrangements of tubes in fixed volume gives better heat transfer coefficient compared with in line one and at the same conditions .3- The optimal tube spacing for different arrangements at is Sh /d and S/d = 1 at S/d = 1 , for both in-line and staggered arrangements.4- A correlation for in-line and staggered arrangements of the present data are developed. This correlation satisfactorily expresses the influences of Re, Pr, and cylinder spacing on the Nusselt Number Nu . The correlation can be used to predict the heat transfer coefficient with reasonable accuracy not exceeding ± 30% of measured values.4-2 Recommendations For Future WorkFrom the experimental study of heat transfer coefficient of single smooth tube, in-line and staggered arrangements of smooth tubes in a fixed volume , we recommend the following research points for the future work as follows:1- Heat transfer coefficient of the different arrangements with anther Sh/d and S/d for both in-line and staggered arrangements in the different fixed volumes.2- Heat transfer coefficient of enhanced tubes surface at the same conditions for both in-line and staggered arrangements in the same fixed volume.3- Optimum design of tube surface enhancement for both in-line and staggered arrangements .4- Study the effect of using hot and moist air on the heat transfer coefficient of the same different arrangements ( in-line and staggered) in the same fixed values.4-1 ConclusionsFrom the experimental results presented and discussed in the previous chapter, the following conclusions may be made :1- The heat transfer characteristics of tubes in fixed volume , bothfor staggered and in-line arrangements are better than those forsingle tube at the same conditions .2- Staggered arrangements of tubes in fixed volume gives better heat transfer coefficient compared with in line one and at the same conditions .3- The optimal tube spacing for different arrangements at is Sh /d and S/d = 1 at S/d = 1 , for both in-line and staggered arrangements.4- A correlation for in-line and staggered arrangements of the present data are developed. This correlation satisfactorily expresses the influences of Re, Pr, and cylinder spacing on the Nusselt Number Nu . The correlation can be used to predict the heat transfer coefficient with reasonable accuracy not exceeding ± 30% of measured values.4-2 Recommendations For Future WorkFrom the experimental study of heat transfer coefficient of single smooth tube, in-line and staggered arrangements of smooth tubes in a fixed volume , we recommend the following research points for the future work as follows:1- Heat transfer coefficient of the different arrangements with anther Sh/d and S/d for both in-line and staggered arrangements in the different fixed volumes.2- Heat transfer coefficient of enhanced tubes surface at the same conditions for both in-line and staggered arrangements in the same fixed volume.3- Optimum design of tube surface enhancement for both in-line and staggered arrangements .4- Study the effect of using hot and moist air on the heat transfer coefficient of the same different arrangements ( in-line and staggered) in the same fixed values.4-1 ConclusionsFrom the experimental results presented and discussed in the previous chapter, the following conclusions may be made :1- The heat transfer characteristics of tubes in fixed volume , bothfor staggered and in-line arrangements are better than those forsingle tube at the same conditions .2- Staggered arrangements of tubes in fixed volume gives better heat transfer coefficient compared with in line one and at the same conditions .3- The optimal tube spacing for different arrangements at is Sh /d and S/d = 1 at S/d = 1 , for both in-line and staggered arrangements.4- A correlation for in-line and staggered arrangements of the present data are developed. This correlation satisfactorily expresses the influences of Re, Pr, and cylinder spacing on the Nusselt Number Nu . The correlation can be used to predict the heat transfer coefficient with reasonable accuracy not exceeding ± 30% of measured values.4-2 Recommendations For Future WorkFrom the experimental study of heat transfer coefficient of single smooth tube, in-line and staggered arrangements of smooth tubes in a fixed volume , we recommend the following research points for the future work as follows:1- Heat transfer coefficient of the different arrangements with anther Sh/d and S/d for both in-line and staggered arrangements in the different fixed volumes.2- Heat transfer coefficient of enhanced tubes surface at the same conditions for both in-line and staggered arrangements in the same fixed volume.3- Optimum design of tube surface enhancement for both in-line and staggered arrangements .4- Study the effect of using hot and moist air on the heat transfer coefficient of the same different arrangements ( in-line and staggered) in the same fixed values.4-1 ConclusionsFrom the experimental results presented and discussed in the previous chapter, the following conclusions may be made :1- The heat transfer characteristics of tubes in fixed volume , bothfor staggered and in-line arrangements are better than those forsingle tube at the same conditions .2- Staggered arrangements of tubes in fixed volume gives better heat transfer coefficient compared with in line one and at the same conditions .3- The optimal tube spacing for different arrangements at is Sh /d and S/d = 1 at S/d = 1 , for both in-line and staggered arrangements.4- A correlation for in-line and staggered arrangements of the present data are developed. This correlation satisfactorily expresses the influences of Re, Pr, and cylinder spacing on the Nusselt Number Nu . The correlation can be used to predict the heat transfer coefficient with reasonable accuracy not exceeding ± 30% of measured values.4-2 Recommendations For Future WorkFrom the experimental study of heat transfer coefficient of single smooth tube, in-line and staggered arrangements of smooth tubes in a fixed volume , we recommend the following research points for the future work as follows:1- Heat transfer coefficient of the different arrangements with anther Sh/d and S/d for both in-line and staggered arrangements in the different fixed volumes.2- Heat transfer coefficient of enhanced tubes surface at the same conditions for both in-line and staggered arrangements in the same fixed volume.3- Optimum design of tube surface enhancement for both in-line and staggered arrangements .4- Study the effect of using hot and moist air on the heat transfer coefficient of the same different arrangements ( in-line and staggered) in the same fixed values.4-1 ConclusionsFrom the experimental results presented and discussed in the previous chapter, the following conclusions may be made :1- The heat transfer characteristics of tubes in fixed volume , bothfor staggered and in-line arrangements are better than those forsingle tube at the same conditions .2- Staggered arrangements of tubes in fixed volume gives better heat transfer coefficient compared with in line one and at the same conditions .3- The optimal tube spacing for different arrangements at is Sh /d and S/d = 1 at S/d = 1 , for both in-line and staggered arrangements.4- A correlation for in-line and staggered arrangements of the present data are developed. This correlation satisfactorily expresses the influences of Re, Pr, and cylinder spacing on the Nusselt Number Nu . The correlation can be used to predict the heat transfer coefficient with reasonable accuracy not exceeding ± 30% of measured values.4-2 Recommendations For Future WorkFrom the experimental study of heat transfer coefficient of single smooth tube, in-line and staggered arrangements of smooth tubes in a fixed volume , we recommend the following research points for the future work as follows:1- Heat transfer coefficient of the different arrangements with anther Sh/d and S/d for both in-line and staggered arrangements in the different fixed volumes.2- Heat transfer coefficient of enhanced tubes surface at the same conditions for both in-line and staggered arrangements in the same fixed volume.3- Optimum design of tube surface enhancement for both in-line and staggered arrangements .4- Study the effect of using hot and moist air on the heat transfer coefficient of the same different arrangements ( in-line and staggered) in the same fixed values.4-1 ConclusionsFrom the experimental results presented and discussed in the previous chapter, the following conclusions may be made :1- The heat transfer characteristics of tubes in fixed volume , bothfor staggered and in-line arrangements are better than those forsingle tube at the same conditions .2- Staggered arrangements of tubes in fixed volume gives better heat transfer coefficient compared with in line one and at the same conditions .3- The optimal tube spacing for different arrangements at is Sh /d and S/d = 1 at S/d = 1 , for both in-line and staggered arrangements.4- A correlation for in-line and staggered arrangements of the present data are developed. This correlation satisfactorily expresses the influences of Re, Pr, and cylinder spacing on the Nusselt Number Nu . The correlation can be used to predict the heat transfer coefficient with reasonable accuracy not exceeding ± 30% of measured values.4-2 Recommendations For Future WorkFrom the experimental study of heat transfer coefficient of single smooth tube, in-line and staggered arrangements of smooth tubes in a fixed volume , we recommend the following research points for the future work as follows:1- Heat transfer coefficient of the different arrangements with anther Sh/d and S/d for both in-line and staggered arrangements in the different fixed volumes.2- Heat transfer coefficient of enhanced tubes surface at the same conditions for both in-line and staggered arrangements in the same fixed volume.3- Optimum design of tube surface enhancement for both in-line and staggered arrangements .4- Study the effect of using hot and moist air on the heat transfer coefficient of the same different arrangements ( in-line and staggered) in the same fixed values.4-1 ConclusionsFrom the experimental results presented and discussed in the previous chapter, the following conclusions may be made :1- The heat transfer characteristics of tubes in fixed volume , bothfor staggered and in-line arrangements are better than those forsingle tube at the same conditions .2- Staggered arrangements of tubes in fixed volume gives better heat transfer coefficient compared with in line one and at the same conditions .3- The optimal tube spacing for different arrangements at is Sh /d and S/d = 1 at S/d = 1 , for both in-line and staggered arrangements.4- A correlation for in-line and staggered arrangements of the present data are developed. This correlation satisfactorily expresses the influences of Re, Pr, and cylinder spacing on the Nusselt Number Nu . The correlation can be used to predict the heat transfer coefficient with reasonable accuracy not exceeding ± 30% of measured values.4-2 Recommendations For Future WorkFrom the experimental study of heat transfer coefficient of single smooth tube, in-line and staggered arrangements of smooth tubes in a fixed volume , we recommend the following research points for the future work as follows:1- Heat transfer coefficient of the different arrangements with anther Sh/d and S/d for both in-line and staggered arrangements in the different fixed volumes.2- Heat transfer coefficient of enhanced tubes surface at the same conditions for both in-line and staggered arrangements in the same fixed volume.3- Optimum design of tube surface enhancement for both in-line and staggered arrangements .4- Study the effect of using hot and moist air on the heat transfer coefficient of the same different arrangements ( in-line and staggered) in the same fixed values.4-1 ConclusionsFrom the experimental results presented and discussed in the previous chapter, the following conclusions may be made :1- The heat transfer characteristics of tubes in fixed volume , bothfor staggered and in-line arrangements are better than those forsingle tube at the same conditions .2- Staggered arrangements of tubes in fixed volume gives better heat transfer coefficient compared with in line one and at the same conditions .3- The optimal tube spacing for different arrangements at is Sh /d and S/d = 1 at S/d = 1 , for both in-line and staggered arrangements.4- A correlation for in-line and staggered arrangements of the present data are developed. This correlation satisfactorily expresses the influences of Re, Pr, and cylinder spacing on the Nusselt Number Nu . The correlation can be used to predict the heat transfer coefficient with reasonable accuracy not exceeding ± 30% of measured values.4-2 Recommendations For Future WorkFrom the experimental study of heat transfer coefficient of single smooth tube, in-line and staggered arrangements of smooth tubes in a fixed volume , we recommend the following research points for the future work as follows:1- Heat transfer coefficient of the different arrangements with anther Sh/d and S/d for both in-line and staggered arrangements in the different fixed volumes.2- Heat transfer coefficient of enhanced tubes surface at the same conditions for both in-line and staggered arrangements in the same fixed volume.3- Optimum design of tube surface enhancement for both in-line and staggered arrangements .4- Study the effect of using hot and moist air on the heat transfer coefficient of the same different arrangements ( in-line and staggered) in the same fixed values.4-1 ConclusionsFrom the experimental results presented and discussed in the previous chapter, the following conclusions may be made :1- The heat transfer characteristics of tubes in fixed volume , bothfor staggered and in-line arrangements are better than those forsingle tube at the same conditions .2- Staggered arrangements of tubes in fixed volume gives better heat transfer coefficient compared with in line one and at the same conditions .3- The optimal tube spacing for different arrangements at is Sh /d and S/d = 1 at S/d = 1 , for both in-line and staggered arrangements.4- A correlation for in-line and staggered arrangements of the present data are developed. This correlation satisfactorily expresses the influences of Re, Pr, and cylinder spacing on the Nusselt Number Nu . The correlation can be used to predict the heat transfer coefficient with reasonable accuracy not exceeding ± 30% of measured values.4-2 Recommendations For Future WorkFrom the experimental study of heat transfer coefficient of single smooth tube, in-line and staggered arrangements of smooth tubes in a fixed volume , we recommend the following research points for the future work as follows:1- Heat transfer coefficient of the different arrangements with anther Sh/d and S/d for both in-line and staggered arrangements in the different fixed volumes.2- Heat transfer coefficient of enhanced tubes surface at the same conditions for both in-line and staggered arrangements in the same fixed volume.3- Optimum design of tube surface enhancement for both in-line and staggered arrangements .4- Study the effect of using hot and moist air on the heat transfer coefficient of the same different arrangements ( in-line and staggered) in the same fixed values.4-1 ConclusionsFrom the experimental results presented and discussed in the previous chapter, the following conclusions may be made :1- The heat transfer characteristics of tubes in fixed volume , bothfor staggered and in-line arrangements are better than those forsingle tube at the same conditions .2- Staggered arrangements of tubes in fixed volume gives better heat transfer coefficient compared with in line one and at the same conditions .3- The optimal tube spacing for different arrangements at is Sh /d and S/d = 1 at S/d = 1 , for both in-line and staggered arrangements.4- A correlation for in-line and staggered arrangements of the present data are developed. This correlation satisfactorily expresses the influences of Re, Pr, and cylinder spacing on the Nusselt Number Nu . The correlation can be used to predict the heat transfer coefficient with reasonable accuracy not exceeding ± 30% of measured values.4-2 Recommendations For Future WorkFrom the experimental study of heat transfer coefficient of single smooth tube, in-line and staggered arrangements of smooth tubes in a fixed volume , we recommend the following research points for the future work as follows:1- Heat transfer coefficient of the different arrangements with anther Sh/d and S/d for both in-line and staggered arrangements in the different fixed volumes.2- Heat transfer coefficient of enhanced tubes surface at the same conditions for both in-line and staggered arrangements in the same fixed volume.3- Optimum design of tube surface enhancement for both in-line and staggered arrangements .4- Study the effect of using hot and moist air on the heat transfer coefficient of the same different arrangements ( in-line and staggered) in the same fixed values.4-1 ConclusionsFrom the experimental results presented and discussed in the previous chapter, the following conclusions may be made :1- The heat transfer characteristics of tubes in fixed volume , bothfor staggered and in-line arrangements are better than those forsingle tube at the same conditions .2- Staggered arrangements of tubes in fixed volume gives better heat transfer coefficient compared with in line one and at the same conditions .3- The optimal tube spacing for different arrangements at is Sh /d and S/d = 1 at S/d = 1 , for both in-line and staggered arrangements.4- A correlation for in-line and staggered arrangements of the present data are developed. This correlation satisfactorily expresses the influences of Re, Pr, and cylinder spacing on the Nusselt Number Nu . The correlation can be used to predict the heat transfer coefficient with reasonable accuracy not exceeding ± 30% of measured values.4-2 Recommendations For Future WorkFrom the experimental study of heat transfer coefficient of single smooth tube, in-line and staggered arrangements of smooth tubes in a fixed volume , we recommend the following research points for the future work as follows:1- Heat transfer coefficient of the different arrangements with anther Sh/d and S/d for both in-line and staggered arrangements in the different fixed volumes.2- Heat transfer coefficient of enhanced tubes surface at the same conditions for both in-line and staggered arrangements in the same fixed volume.3- Optimum design of tube surface enhancement for both in-line and staggered arrangements .4- Study the effect of using hot and moist air on the heat transfer coefficient of the same different arrangements ( in-line and staggered) in the same fixed values.4-1 ConclusionsFrom the experimental results presented and discussed in the previous chapter, the following conclusions may be made :1- The heat transfer characteristics of tubes in fixed volume , bothfor staggered and in-line arrangements are better than those forsingle tube at the same conditions .2- Staggered arrangements of tubes in fixed volume gives better heat transfer coefficient compared with in line one and at the same conditions .3- The optimal tube spacing for different arrangements at is Sh /d and S/d = 1 at S/d = 1 , for both in-line and staggered arrangements.4- A correlation for in-line and staggered arrangements of the present data are developed. This correlation satisfactorily expresses the influences of Re, Pr, and cylinder spacing on the Nusselt Number Nu . The correlation can be used to predict the heat transfer coefficient with reasonable accuracy not exceeding ± 30% of measured values.4-2 Recommendations For Future Workthree sinking agents ( sand, silt, mixture ), of the fiveoil to water ratios, for each of the mentionneci sinkingagent to eil ratios. In order to evaluate the reproduc-ibility of experimental results, a statistical analysis,by t-test method, was carried out. 
   
     
PDF  
       

Author Related Publications

  • Alaa Hassan Atia Abdel-Hafez, "Properties and durability of grounded blast furnace slag concrete", 1997 More

Department Related Publications

    Tweet