Optimal geometric arrangement of tubing cross-flow heat exchanger

Faculty Engineering Year: 2006
Type of Publication: Theses Pages: 87
Authors:
BibID 3204011
Keywords : S    
Abstract:
4-1 ConclusionsFrom the experimental results presented and discussed in the previous chapter, the following conclusions may be made :1- The heat transfer characteristics of tubes in fixed volume , bothfor staggered and in-line arrangements are better than those forsingle tube at the same conditions .2- Staggered arrangements of tubes in fixed volume gives better heat transfer coefficient compared with in line one and at the same conditions .3- The optimal tube spacing for different arrangements at is Sh /d and S/d = 1 at S/d = 1 , for both in-line and staggered arrangements.4- A correlation for in-line and staggered arrangements of the present data are developed. This correlation satisfactorily expresses the influences of Re, Pr, and cylinder spacing on the Nusselt Number Nu . The correlation can be used to predict the heat transfer coefficient with reasonable accuracy not exceeding ± 30% of measured values.4-2 Recommendations For Future WorkFrom the experimental study of heat transfer coefficient of single smooth tube, in-line and staggered arrangements of smooth tubes in a fixed volume , we recommend the following research points for the future work as follows:1- Heat transfer coefficient of the different arrangements with anther Sh/d and S/d for both in-line and staggered arrangements in the different fixed volumes.2- Heat transfer coefficient of enhanced tubes surface at the same conditions for both in-line and staggered arrangements in the same fixed volume.3- Optimum design of tube surface enhancement for both in-line and staggered arrangements .4- Study the effect of using hot and moist air on the heat transfer coefficient of the same different arrangements ( in-line and staggered) in the same fixed values.4-1 ConclusionsFrom the experimental results presented and discussed in the previous chapter, the following conclusions may be made :1- The heat transfer characteristics of tubes in fixed volume , bothfor staggered and in-line arrangements are better than those forsingle tube at the same conditions .2- Staggered arrangements of tubes in fixed volume gives better heat transfer coefficient compared with in line one and at the same conditions .3- The optimal tube spacing for different arrangements at is Sh /d and S/d = 1 at S/d = 1 , for both in-line and staggered arrangements.4- A correlation for in-line and staggered arrangements of the present data are developed. This correlation satisfactorily expresses the influences of Re, Pr, and cylinder spacing on the Nusselt Number Nu . The correlation can be used to predict the heat transfer coefficient with reasonable accuracy not exceeding ± 30% of measured values.4-2 Recommendations For Future WorkFrom the experimental study of heat transfer coefficient of single smooth tube, in-line and staggered arrangements of smooth tubes in a fixed volume , we recommend the following research points for the future work as follows:1- Heat transfer coefficient of the different arrangements with anther Sh/d and S/d for both in-line and staggered arrangements in the different fixed volumes.2- Heat transfer coefficient of enhanced tubes surface at the same conditions for both in-line and staggered arrangements in the same fixed volume.3- Optimum design of tube surface enhancement for both in-line and staggered arrangements .4- Study the effect of using hot and moist air on the heat transfer coefficient of the same different arrangements ( in-line and staggered) in the same fixed values.4-1 ConclusionsFrom the experimental results presented and discussed in the previous chapter, the following conclusions may be made :1- The heat transfer characteristics of tubes in fixed volume , bothfor staggered and in-line arrangements are better than those forsingle tube at the same conditions .2- Staggered arrangements of tubes in fixed volume gives better heat transfer coefficient compared with in line one and at the same conditions .3- The optimal tube spacing for different arrangements at is Sh /d and S/d = 1 at S/d = 1 , for both in-line and staggered arrangements.4- A correlation for in-line and staggered arrangements of the present data are developed. This correlation satisfactorily expresses the influences of Re, Pr, and cylinder spacing on the Nusselt Number Nu . The correlation can be used to predict the heat transfer coefficient with reasonable accuracy not exceeding ± 30% of measured values.4-2 Recommendations For Future WorkFrom the experimental study of heat transfer coefficient of single smooth tube, in-line and staggered arrangements of smooth tubes in a fixed volume , we recommend the following research points for the future work as follows:1- Heat transfer coefficient of the different arrangements with anther Sh/d and S/d for both in-line and staggered arrangements in the different fixed volumes.2- Heat transfer coefficient of enhanced tubes surface at the same conditions for both in-line and staggered arrangements in the same fixed volume.3- Optimum design of tube surface enhancement for both in-line and staggered arrangements .4- Study the effect of using hot and moist air on the heat transfer coefficient of the same different arrangements ( in-line and staggered) in the same fixed values.4-1 ConclusionsFrom the experimental results presented and discussed in the previous chapter, the following conclusions may be made :1- The heat transfer characteristics of tubes in fixed volume , bothfor staggered and in-line arrangements are better than those forsingle tube at the same conditions .2- Staggered arrangements of tubes in fixed volume gives better heat transfer coefficient compared with in line one and at the same conditions .3- The optimal tube spacing for different arrangements at is Sh /d and S/d = 1 at S/d = 1 , for both in-line and staggered arrangements.4- A correlation for in-line and staggered arrangements of the present data are developed. This correlation satisfactorily expresses the influences of Re, Pr, and cylinder spacing on the Nusselt Number Nu . The correlation can be used to predict the heat transfer coefficient with reasonable accuracy not exceeding ± 30% of measured values.4-2 Recommendations For Future WorkFrom the experimental study of heat transfer coefficient of single smooth tube, in-line and staggered arrangements of smooth tubes in a fixed volume , we recommend the following research points for the future work as follows:1- Heat transfer coefficient of the different arrangements with anther Sh/d and S/d for both in-line and staggered arrangements in the different fixed volumes.2- Heat transfer coefficient of enhanced tubes surface at the same conditions for both in-line and staggered arrangements in the same fixed volume.3- Optimum design of tube surface enhancement for both in-line and staggered arrangements .4- Study the effect of using hot and moist air on the heat transfer coefficient of the same different arrangements ( in-line and staggered) in the same fixed values.4-1 ConclusionsFrom the experimental results presented and discussed in the previous chapter, the following conclusions may be made :1- The heat transfer characteristics of tubes in fixed volume , bothfor staggered and in-line arrangements are better than those forsingle tube at the same conditions .2- Staggered arrangements of tubes in fixed volume gives better heat transfer coefficient compared with in line one and at the same conditions .3- The optimal tube spacing for different arrangements at is Sh /d and S/d = 1 at S/d = 1 , for both in-line and staggered arrangements.4- A correlation for in-line and staggered arrangements of the present data are developed. This correlation satisfactorily expresses the influences of Re, Pr, and cylinder spacing on the Nusselt Number Nu . The correlation can be used to predict the heat transfer coefficient with reasonable accuracy not exceeding ± 30% of measured values.4-2 Recommendations For Future WorkFrom the experimental study of heat transfer coefficient of single smooth tube, in-line and staggered arrangements of smooth tubes in a fixed volume , we recommend the following research points for the future work as follows:1- Heat transfer coefficient of the different arrangements with anther Sh/d and S/d for both in-line and staggered arrangements in the different fixed volumes.2- Heat transfer coefficient of enhanced tubes surface at the same conditions for both in-line and staggered arrangements in the same fixed volume.3- Optimum design of tube surface enhancement for both in-line and staggered arrangements .4- Study the effect of using hot and moist air on the heat transfer coefficient of the same different arrangements ( in-line and staggered) in the same fixed values.4-1 ConclusionsFrom the experimental results presented and discussed in the previous chapter, the following conclusions may be made :1- The heat transfer characteristics of tubes in fixed volume , bothfor staggered and in-line arrangements are better than those forsingle tube at the same conditions .2- Staggered arrangements of tubes in fixed volume gives better heat transfer coefficient compared with in line one and at the same conditions .3- The optimal tube spacing for different arrangements at is Sh /d and S/d = 1 at S/d = 1 , for both in-line and staggered arrangements.4- A correlation for in-line and staggered arrangements of the present data are developed. This correlation satisfactorily expresses the influences of Re, Pr, and cylinder spacing on the Nusselt Number Nu . The correlation can be used to predict the heat transfer coefficient with reasonable accuracy not exceeding ± 30% of measured values.4-2 Recommendations For Future WorkFrom the experimental study of heat transfer coefficient of single smooth tube, in-line and staggered arrangements of smooth tubes in a fixed volume , we recommend the following research points for the future work as follows:1- Heat transfer coefficient of the different arrangements with anther Sh/d and S/d for both in-line and staggered arrangements in the different fixed volumes.2- Heat transfer coefficient of enhanced tubes surface at the same conditions for both in-line and staggered arrangements in the same fixed volume.3- Optimum design of tube surface enhancement for both in-line and staggered arrangements .4- Study the effect of using hot and moist air on the heat transfer coefficient of the same different arrangements ( in-line and staggered) in the same fixed values.4-1 ConclusionsFrom the experimental results presented and discussed in the previous chapter, the following conclusions may be made :1- The heat transfer characteristics of tubes in fixed volume , bothfor staggered and in-line arrangements are better than those forsingle tube at the same conditions .2- Staggered arrangements of tubes in fixed volume gives better heat transfer coefficient compared with in line one and at the same conditions .3- The optimal tube spacing for different arrangements at is Sh /d and S/d = 1 at S/d = 1 , for both in-line and staggered arrangements.4- A correlation for in-line and staggered arrangements of the present data are developed. This correlation satisfactorily expresses the influences of Re, Pr, and cylinder spacing on the Nusselt Number Nu . The correlation can be used to predict the heat transfer coefficient with reasonable accuracy not exceeding ± 30% of measured values.4-2 Recommendations For Future WorkFrom the experimental study of heat transfer coefficient of single smooth tube, in-line and staggered arrangements of smooth tubes in a fixed volume , we recommend the following research points for the future work as follows:1- Heat transfer coefficient of the different arrangements with anther Sh/d and S/d for both in-line and staggered arrangements in the different fixed volumes.2- Heat transfer coefficient of enhanced tubes surface at the same conditions for both in-line and staggered arrangements in the same fixed volume.3- Optimum design of tube surface enhancement for both in-line and staggered arrangements .4- Study the effect of using hot and moist air on the heat transfer coefficient of the same different arrangements ( in-line and staggered) in the same fixed values.4-1 ConclusionsFrom the experimental results presented and discussed in the previous chapter, the following conclusions may be made :1- The heat transfer characteristics of tubes in fixed volume , bothfor staggered and in-line arrangements are better than those forsingle tube at the same conditions .2- Staggered arrangements of tubes in fixed volume gives better heat transfer coefficient compared with in line one and at the same conditions .3- The optimal tube spacing for different arrangements at is Sh /d and S/d = 1 at S/d = 1 , for both in-line and staggered arrangements.4- A correlation for in-line and staggered arrangements of the present data are developed. This correlation satisfactorily expresses the influences of Re, Pr, and cylinder spacing on the Nusselt Number Nu . The correlation can be used to predict the heat transfer coefficient with reasonable accuracy not exceeding ± 30% of measured values.4-2 Recommendations For Future WorkFrom the experimental study of heat transfer coefficient of single smooth tube, in-line and staggered arrangements of smooth tubes in a fixed volume , we recommend the following research points for the future work as follows:1- Heat transfer coefficient of the different arrangements with anther Sh/d and S/d for both in-line and staggered arrangements in the different fixed volumes.2- Heat transfer coefficient of enhanced tubes surface at the same conditions for both in-line and staggered arrangements in the same fixed volume.3- Optimum design of tube surface enhancement for both in-line and staggered arrangements .4- Study the effect of using hot and moist air on the heat transfer coefficient of the same different arrangements ( in-line and staggered) in the same fixed values.4-1 ConclusionsFrom the experimental results presented and discussed in the previous chapter, the following conclusions may be made :1- The heat transfer characteristics of tubes in fixed volume , bothfor staggered and in-line arrangements are better than those forsingle tube at the same conditions .2- Staggered arrangements of tubes in fixed volume gives better heat transfer coefficient compared with in line one and at the same conditions .3- The optimal tube spacing for different arrangements at is Sh /d and S/d = 1 at S/d = 1 , for both in-line and staggered arrangements.4- A correlation for in-line and staggered arrangements of the present data are developed. This correlation satisfactorily expresses the influences of Re, Pr, and cylinder spacing on the Nusselt Number Nu . The correlation can be used to predict the heat transfer coefficient with reasonable accuracy not exceeding ± 30% of measured values.4-2 Recommendations For Future WorkFrom the experimental study of heat transfer coefficient of single smooth tube, in-line and staggered arrangements of smooth tubes in a fixed volume , we recommend the following research points for the future work as follows:1- Heat transfer coefficient of the different arrangements with anther Sh/d and S/d for both in-line and staggered arrangements in the different fixed volumes.2- Heat transfer coefficient of enhanced tubes surface at the same conditions for both in-line and staggered arrangements in the same fixed volume.3- Optimum design of tube surface enhancement for both in-line and staggered arrangements .4- Study the effect of using hot and moist air on the heat transfer coefficient of the same different arrangements ( in-line and staggered) in the same fixed values.4-1 ConclusionsFrom the experimental results presented and discussed in the previous chapter, the following conclusions may be made :1- The heat transfer characteristics of tubes in fixed volume , bothfor staggered and in-line arrangements are better than those forsingle tube at the same conditions .2- Staggered arrangements of tubes in fixed volume gives better heat transfer coefficient compared with in line one and at the same conditions .3- The optimal tube spacing for different arrangements at is Sh /d and S/d = 1 at S/d = 1 , for both in-line and staggered arrangements.4- A correlation for in-line and staggered arrangements of the present data are developed. This correlation satisfactorily expresses the influences of Re, Pr, and cylinder spacing on the Nusselt Number Nu . The correlation can be used to predict the heat transfer coefficient with reasonable accuracy not exceeding ± 30% of measured values.4-2 Recommendations For Future WorkFrom the experimental study of heat transfer coefficient of single smooth tube, in-line and staggered arrangements of smooth tubes in a fixed volume , we recommend the following research points for the future work as follows:1- Heat transfer coefficient of the different arrangements with anther Sh/d and S/d for both in-line and staggered arrangements in the different fixed volumes.2- Heat transfer coefficient of enhanced tubes surface at the same conditions for both in-line and staggered arrangements in the same fixed volume.3- Optimum design of tube surface enhancement for both in-line and staggered arrangements .4- Study the effect of using hot and moist air on the heat transfer coefficient of the same different arrangements ( in-line and staggered) in the same fixed values.4-1 ConclusionsFrom the experimental results presented and discussed in the previous chapter, the following conclusions may be made :1- The heat transfer characteristics of tubes in fixed volume , bothfor staggered and in-line arrangements are better than those forsingle tube at the same conditions .2- Staggered arrangements of tubes in fixed volume gives better heat transfer coefficient compared with in line one and at the same conditions .3- The optimal tube spacing for different arrangements at is Sh /d and S/d = 1 at S/d = 1 , for both in-line and staggered arrangements.4- A correlation for in-line and staggered arrangements of the present data are developed. This correlation satisfactorily expresses the influences of Re, Pr, and cylinder spacing on the Nusselt Number Nu . The correlation can be used to predict the heat transfer coefficient with reasonable accuracy not exceeding ± 30% of measured values.4-2 Recommendations For Future WorkFrom the experimental study of heat transfer coefficient of single smooth tube, in-line and staggered arrangements of smooth tubes in a fixed volume , we recommend the following research points for the future work as follows:1- Heat transfer coefficient of the different arrangements with anther Sh/d and S/d for both in-line and staggered arrangements in the different fixed volumes.2- Heat transfer coefficient of enhanced tubes surface at the same conditions for both in-line and staggered arrangements in the same fixed volume.3- Optimum design of tube surface enhancement for both in-line and staggered arrangements .4- Study the effect of using hot and moist air on the heat transfer coefficient of the same different arrangements ( in-line and staggered) in the same fixed values.4-1 ConclusionsFrom the experimental results presented and discussed in the previous chapter, the following conclusions may be made :1- The heat transfer characteristics of tubes in fixed volume , bothfor staggered and in-line arrangements are better than those forsingle tube at the same conditions .2- Staggered arrangements of tubes in fixed volume gives better heat transfer coefficient compared with in line one and at the same conditions .3- The optimal tube spacing for different arrangements at is Sh /d and S/d = 1 at S/d = 1 , for both in-line and staggered arrangements.4- A correlation for in-line and staggered arrangements of the present data are developed. This correlation satisfactorily expresses the influences of Re, Pr, and cylinder spacing on the Nusselt Number Nu . The correlation can be used to predict the heat transfer coefficient with reasonable accuracy not exceeding ± 30% of measured values.4-2 Recommendations For Future WorkFrom the experimental study of heat transfer coefficient of single smooth tube, in-line and staggered arrangements of smooth tubes in a fixed volume , we recommend the following research points for the future work as follows:1- Heat transfer coefficient of the different arrangements with anther Sh/d and S/d for both in-line and staggered arrangements in the different fixed volumes.2- Heat transfer coefficient of enhanced tubes surface at the same conditions for both in-line and staggered arrangements in the same fixed volume.3- Optimum design of tube surface enhancement for both in-line and staggered arrangements .4- Study the effect of using hot and moist air on the heat transfer coefficient of the same different arrangements ( in-line and staggered) in the same fixed values.4-1 ConclusionsFrom the experimental results presented and discussed in the previous chapter, the following conclusions may be made :1- The heat transfer characteristics of tubes in fixed volume , bothfor staggered and in-line arrangements are better than those forsingle tube at the same conditions .2- Staggered arrangements of tubes in fixed volume gives better heat transfer coefficient compared with in line one and at the same conditions .3- The optimal tube spacing for different arrangements at is Sh /d and S/d = 1 at S/d = 1 , for both in-line and staggered arrangements.4- A correlation for in-line and staggered arrangements of the present data are developed. This correlation satisfactorily expresses the influences of Re, Pr, and cylinder spacing on the Nusselt Number Nu . The correlation can be used to predict the heat transfer coefficient with reasonable accuracy not exceeding ± 30% of measured values.4-2 Recommendations For Future WorkFrom the experimental study of heat transfer coefficient of single smooth tube, in-line and staggered arrangements of smooth tubes in a fixed volume , we recommend the following research points for the future work as follows:soil gaps at different locations were also studied.An experimental program was performed to investigate the behaviour ofreinforced masonry walls resting on either a rigid or an elastic foundation takinginto consideration the different types of soil and different sizes of soil gaps atdifferent locations. Eighteen masonry wall panels were tested and the results werecompared to those obtained numerically. The comparison proved a reasonableaccuracy and similarity between the results.It was found that the 2-D finite element method is not accurate whendealing with concentrated loads. Special care should be taken when an eccentricload is applied since it causes high tensile and compressive stresses at the twowall faces. Changing the type of soil underneath the wall had a considerable effecton the developed vertical deformation. It was also observed that the end gap ismore serious than the middle gap since the corresponding increase in thedeformations and stresses is much higher.Many conclusions, relations and recommendations which may be useful fordesigners were obtained and introduced in the form of tables and curves. 
   
     
PDF  
       

Author Related Publications

  • Gehan Hassan Soliman Yahia, "Optimal geometric arrangement of tubing cross-flow heat exchanger", 2006 More

Department Related Publications

    Tweet