Suppression of the Electrical Tree Growth in Solid Insulation Using a Transverse Layer of Dielectric Barrier

Faculty Engineering Year: 2013
Type of Publication: ZU Hosted Pages:
Authors:
Journal: Journal of Electrical Engineering Vol. 13, No. 3, pp. 114-117, 2013 POLITEHNICA Volume:
Keywords : Suppression , , Electrical Tree Growth , Solid Insulation    
Abstract:
A solid insulation with a transverse layer of dielectric materials is described to investigate the effect on the growth of electrical trees. A needle to plane electrode is used for the simulation of the sharp protrusion in underground cable
   
     
 
       

Author Related Publications

  • Mohamed Talaat Mohamed Mostafa, "Discharge characteristics of gliding arc plasma reactor with argon/nitrogen", Journal of Advances in Physics, 2015 More
  • Mohamed Talaat Mohamed Mostafa, "Use of Finite Element Method for the Numerical Analysis of Eddy Current Brake", IEEE, 2014 More
  • Mohamed Talaat Mohamed Mostafa, "A University-Industry Link in Egypt Using the Social Networks", IEEE, 2014 More
  • Mohamed Talaat Mohamed Mostafa, "A Bi-level optimization strategy for electric vehicle retailers based on robust pricing and hybrid demand response", Elsevier, 2024 More
  • Mohamed Talaat Mohamed Mostafa, "New Experimental Study of an Injected Air Bubble Deformation in Dielectric Liquid under Applied High D.C. Voltage Using Photographic Recording", IEEE, 2003 More

Department Related Publications

  • Raef Seam Sayed Ahmed, "Model predictive control algorithm for fault ride-through of stand-alone microgrid inverter", Elsevier Ltd., 2021 More
  • Enas Ahmed Mohamed Abdelhay, "Recent Maximum Power Point Tracking Methods for Wind Energy Conversion System", Elsevier, 2024 More
  • Raef Seam Sayed Ahmed, "Optimal design and analysis of DC–DC converter with maximum power controller for stand-alone PV system", Elsevier Ltd., 2021 More
  • Raef Seam Sayed Ahmed, "Parameters identification and optimization of photovoltaic panels under real conditions using Lambert W-function", Elsevier Ltd., 2021 More
  • Mohammed Abdelhamied Abdelnaeem , "Artificial ecosystem-based optimiser to electrically characterise PV generating systems under various operating conditions reinforced by experimental validations", Wiley, 2021 More
Tweet